Triangle-Angle-Bisector Theorem

If a ray bisects an angle of a triangle, then it divides the opposite side into two segments that are proportional to the other two sides of the triangle.

PROOF: SEE EXERCISE 16.

If... $\angle UVX \cong \angle WVX$

Then...
$$\frac{UX}{WX} = \frac{UV}{WV}$$

Find the value of x.

Enter your argoer
$$\frac{20}{24} = \frac{20}{\times}$$

 $30 \times = 480$
 $\times = 16$

Find the value of x.

$$\frac{16}{12} = \frac{16}{12}$$

What are the values of AD and DC?

SOLUTION

$$\frac{10}{X} = \frac{16}{13-X}$$

$$130-10X = 16X$$

$$130 = 26X$$

$$X = 5$$

$$A D = 5$$

$$D C = 13-5$$

$$= 8$$

5. a. What is the value of x?

Enter y
$$\frac{3 \times + 3 \cdot 7}{3 \times -7} = \frac{18}{12}$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (6 \times + (6 = 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (7 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{2} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

$$\frac{3 \times + 3}{3 \times -7} = \frac{3}{3} \qquad (8 \times + (6 \times + 6 \times -2))$$

b. What are the values of GH and GK?

Proportions in Triangles

THEOREM 7-5

Side-Splitter Theorem

If... $\overline{MN} \parallel \overline{AC}$

Then... $\frac{AM}{MB} = \frac{CN}{NB}$

THEOREM 7-6

Triangle Midsegment Theorem

If... $\overline{DG} \cong \overline{GE}$ and $\overline{FH} \cong \overline{HE}$

Then... $\overline{GH} \parallel \overline{DF}$ and $\overline{GH} = \frac{1}{2}DF$

THEOREM 7-7

Triangle-Angle-Bisector Theorem

If... $\angle UVX \cong \angle WVX$

Then... $\frac{UX}{WX} = \frac{UV}{WV}$

